New evidence of corticospinal network modulation induced by motor imagery.

نویسندگان

  • Sidney Grosprêtre
  • Florent Lebon
  • Charalambos Papaxanthis
  • Alain Martin
چکیده

Motor imagery (MI) is the mental simulation of movement, without the corresponding muscle contraction. Whereas the activation of cortical motor areas during MI is established, the involvement of spinal structures is still under debate. We used original and complementary techniques to probe the influence of MI on spinal structures. Amplitude of motor-evoked potentials (MEPs), cervico-medullary-evoked potentials (CMEPs), and Hoffmann (H)-reflexes of the flexor carpi radialis (FCR) muscle and of the triceps surae muscles was measured in young, healthy subjects at rest and during MI. Participants were asked to imagine maximal voluntary contraction of the wrist and ankle, while the targeted limb was fixed (static condition). We confirmed previous studies with an increase of FCR MEPs during MI compared with rest. Interestingly, CMEPs, but not H-reflexes, also increased during MI, revealing a possible activation of subcortical structures. Then, to investigate the effect of MI on the spinal network, we used two techniques: 1) passive lengthening of the targeted muscle via an isokinetic dynamometer and 2) conditioning of H-reflexes with stimulation of the antagonistic nerve. Both techniques activate spinal inhibitory presynaptic circuitry, reducing the H-reflex amplitude at rest. In contrast, no reduction of H-reflex amplitude was observed during MI. These findings suggest that MI has modulatory effects on the spinal neuronal network. Specifically, the activation of low-threshold spinal structures during specific conditions (lengthening and H-reflex conditioning) highlights the possible generation of subliminal cortical output during MI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.

Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that ...

متن کامل

Corticospinal excitability is speci_cally modulated by motor imagery] a magnetic stimulation study

Transcranial magnetic stimulation "TMS# was used to investigate whether the excitability of the corticospinal system is selectively a}ected by motor imagery[ To this purpose\ we performed two experiments[ In the _rst one we recorded motor evoked potentials from right hand and arm muscles during mental simulation of ~exion:extension movements of both distal and proximal joints[ In the second exp...

متن کامل

The influence of hand posture on corticospinal excitability during motor imagery: a transcranial magnetic stimulation study.

In order to study the interaction between proprioceptive information and motor imagery, we herein investigate how compatible and incompatible postural signals influence corticospinal excitability during the mental simulation of hand movements. Subjects were asked to imagine themselves joining the tips of the thumb and the little finger while they maintained one of the two following hand posture...

متن کامل

Acute Effect of Visually Induced Kinesthetic Illusion in Patients with Stroke: A Preliminary Report

We previously reported that a kinesthetic illusion, induced by a visual stimulus using a movie video (KiNVIS), produces vivid kinesthetic feeling in a healthy subject and in a patient with stroke, even though the body is actually in a resting condition [1-3]. The subjective kinesthesia felt in the first person during KiNVIS is generally vivid and, in our experience, stronger than that experienc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2016